Medical/biological Study (experimental study)

Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: Molecular mechanism for cancer- and blood-brain barrier-related effects.

By: Leszczynski D, Joenvaara S, Reivinen J, Kuokka R
Published in: Differentiation 2002; 70 (2-3): 120 - 129

Aim of study (according to author)
To determine whether non-thermal exposure of cells to 900 MHz GSM mobile phone radiation activates signal transduction pathways and induces cellular stress response in a human model.

Endpoint
- activation of signal transduction pathways and induction of cellular stress response (expression status of heat shock protein 27 and p38MAPK)

Exposure

General category: GSM, microwaves

<table>
<thead>
<tr>
<th>Field characteristics</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>900 MHz pulsed (PW)</td>
<td>SAR: 2 W/kg mean value (1.8-2.5 W/kg)</td>
</tr>
<tr>
<td>exposure duration: continuous for 1 h</td>
<td></td>
</tr>
</tbody>
</table>

Exposed system:
intact cell/cell culture (in vitro)
EA.hy926 cells

Methods
Endpoint/Measurement parameters/Methodology
- molecular biosynthesis: protein phosphorylation; expression status of heat shock protein 27 and p38MAPK
- others: activation of signal transduction pathways and induction of cellular stress response (see above)

investigated material: isolated bio./chem. substance (in vitro)

time of investigation: after exposure

Main outcome of study (according to author)
The results suggest that mobile phone radiation activates cellular signal transduction and stress response pathways. 1-hour of non-thermal exposure of the cells changes phosphorylation status of numerous, yet largely unidentified, proteins. One of these proteins was heat shock protein 27 (hsp27). Mobile phone exposure caused a transient increase in phosphorylation of hsp27. This was prevented by a specific inhibitor of p38 mitogen-activated protein kinase (p38MAPK). Mobile phone caused also transient changes in the protein expression levels of p38MAPK and hsp27.

(Study character: medical/biological study, experimental study, full/main study)

Related articles
- Hirose H et al. (2007): Mobile phone base station-emitted radiation does not induce phosphorylation
- Friedman J et al. (2007): Mechanism of short-term ERK activation by electromagnetic fields at mobile...
- Sanchez S et al. (2007): In Vitro Study of the Stress Response of Human Skin Cells to GSM-1800 Mobile...
- Lantow M et al. (2006): Free radical release and HSP70 expression in two human immune-relevant cell...
- Lantow M et al. (2006): ROS release and Hsp70 expression after exposure to 1,800 MHz radiofrequency...
- Chauhan V et al. (2006): Gene Expression Analysis of a Human Lymphoblastoma Cell Line Exposed In Vitro...
- Hirose H et al. (2006): Phosphorylation and gene expression of p53 are not affected in human cells...
- Qutob SS et al. (2006): Microarray gene expression profiling of a human glioblastoma cell line exposed...
- Chauhan V et al. (2006): Analysis of proto-oncogene and heat-shock protein gene expression in human...
- Lee JS et al. (2006): Radiofrequency radiation does not induce stress response in human T-lymphocytes...
- Remondini D et al. (2006): Gene expression changes in human cells after exposure to mobile phone...
- Nylund R et al. (2006): Mobile phone radiation causes changes in gene and protein expression in human...
- Gurisik E et al. (2006): An in vitro study of the effects of exposure to a GSM signal in two human cell...
- Vanderwaal RP et al. (2006): HSP27 phosphorylation increases after 45°C or 41°C heat shocks but not after...